《图解HTTP》
《图解HTTP》

目录

第 1 章 了解 Web 及网络基础

1.1 使用 HTTP 协议访问 Web

Web 使用一种名为HTTP(HyperText Transfer Protocol,超文本传输协议 )的协议作为规范,完成从客户端到服务器端等一系列运作流程。而协议是指规则的约定。可以说,Web 是建立在 HTTP 协议上通信的。

1.2 HTTP 的诞生

  • HTTP/0.9

HTTP 于 1990 年问世。那时的 HTTP 并没有作为正式的标准被建立。现在的 HTTP 其实含有 HTTP1.0 之前版本的意思,因此被称为 HTTP/0.9。

  • HTTP/1.0

HTTP 正式作为标准被公布是在 1996 年的 5 月,版本被命名为 HTTP/1.0,并记载于 RFC1945。虽说是初期标准,但该协议标准至今仍被广泛使用在服务器端。

1997 年 1 月公布的 HTTP/1.1 是目前主流的 HTTP 协议版本。当初的标准是 RFC2068,之后发布的修订版 RFC2616 就是当前的最新版本。

1.3 网络基础 TCP/IP

1.3.1 TCP/IP 协议族

TCP/IP是互联网相关的各类协议族的总称
TCP/IP是互联网相关的各类协议族的总称

像这样把与互联网相关联的协议集合起来总称为 TCP/IP。也有说法认为,TCP/IP 是指 TCP 和 IP 这两种协议。还有一种说法认为,TCP/ IP 是在 IP 协议的通信过程中,使用到的协议族的统称

1.3.2 TCP/IP 的分层管理

TCP/IP 协议族里重要的一点就是分层。TCP/IP 协议族按层次分别分为以下 4 层:应用层传输层网络层数据链路层

把 TCP/IP 层次化是有好处的。比如,如果互联网只由一个协议统筹,某个地方需要改变设计时,就必须把所有部分整体替换掉。而分层之后只需把变动的层替换掉即可。把各层之间的接口部分规划好之后,每个层次内部的设计就能够自由改动了。

  • 应用层:决定了向用户提供应用服务时通信的活动。

TCP/IP 协议族内预存了各类通用的应用服务。比如,FTP(File Transfer Protocol,文件传输协议)和 DNS(Domain Name System,域名系统)服务就是其中两类。

HTTP 协议也处于该层。

  • 传输层:对上层应用层,提供处于网络连接中的两台计算机之间的数据传输。

在传输层有两个性质不同的协议:TCP(Transmission Control Protocol,传输控制协议)和 UDP(User Data Protocol,用户数据报协议)。

  • 网络层(又名网络互连层):用来处理在网络上流动的数据包。

数据包是网络传输的最小数据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计算机,并把数据包传送给对方。

数据包是网络传输的最小数据单位。该层规定了通过怎样的路径(所谓的传输路线)到达对方计算机,并把数据包传送给对方。

  • 链路层(又名数据链路层、网络接口层):用来处理连接网络的硬件部分。

包括控制操作系统、硬件的设备驱动、NIC(Network Interface Card,网络适配器,即网卡),及光纤等物理可见部分(还包括连接器等一切传输媒介)。

硬件上的范畴均在链路层的作用范围之内

1.3.3 TCP/IP 通信传输流

TCP/IP通信传输流
TCP/IP通信传输流

发送端在层与层之间传输数据时,每经过一层时必定会被打上一个该层所属的首部信息。反之,接收端在层与层传输数据时,每经过一层时会把对应的首部消去。这种把数据信息包装起来的做法称为封装(encapsulate)。

HTTP协议请求中的封装过程
HTTP协议请求中的封装过程

1.4 与 HTTP 关系密切的协议 : IP、TCP 和 DNS

1.4.1 负责传输的 IP 协议

  • 按层次分,IP(Internet Protocol)网际协议位于网络层
  • 几乎所有使用网络的系统都会用到 IP 协议
  • TCP/IP 协议族中的 IP 指的就是网际协议

IP 协议的作用是把各种数据包传送给对方。而要保证确实传送到对方那里,则需要满足各类条件。其中两个重要的条件是 IP 地址MAC 地址(Media Access Control Address)。

IP 地址指明了节点被分配到的地址MAC 地址是指网卡所属的固定地址。IP 地址可以和 MAC 地址进行配对。IP 地址可变换,但 MAC 地址基本上不会更改。

使用 ARP 协议凭借 MAC 地址进行通信

IP 间的通信依赖 MAC 地址。在网络上,通信的双方在同一局域网(LAN)内的情况是很少的,通常是经过多台计算机和网络设备中转才能连接到对方。而在进行中转时,会利用下一站中转设备的 MAC 地址来搜索下一个中转目标。这时,会采用 ARP 协议(Address Resolution Protocol)。ARP 是一种用以解析地址的协议,根据通信方的 IP 地址就可以反查出对应的 MAC 地址。

ARP协议解析过程
ARP协议解析过程

1.4.2 确保可靠性的 TCP 协议

  • 按层次分,TCP 位于传输层,提供可靠的字节流服务

所谓的字节流服务(Byte Stream Service)是指,为了方便传输,将大块数据分割成以报文段(segment)为单位的数据包进行管理。

而可靠的传输服务是指,能够把数据准确可靠地传给对方。

一言以蔽之,TCP 协议为了更容易传送大数据才把数据分割,而且 TCP 协议能够确认数据最终是否送达到对方

确保数据能到达目标

  • TCP 协议采用了三次握手(three-way handshaking)策略
  • 握手过程中使用了 TCP 的标志(flag) —— SYN(synchronize) 和 ACK(acknowledgement)
TCP协议的三次握手
TCP协议的三次握手

发送端首先发送一个带 SYN 标志的数据包给对方。接收端收到后,回传一个带有 SYN/ACK 标志的数据包以示传达确认信息。最后,发送端再回传一个带 ACK 标志的数据包,代表“握手”结束。

若在握手过程中某个阶段莫名中断,TCP 协议会再次以相同的顺序发送相同的数据包

1.5 负责域名解析的 DNS 服务

  • DNS(Domain Name System)服务和 HTTP 协议一样位于应用层
  • 提供域名到 IP 地址之间的解析服务
DNS解析过程
DNS解析过程

1.6 各种协议与 HTTP 协议的关系

  • DNS 服务:解析域名至对应的IP地址
  • HTTP 协议:生成针对目标Web服务器的HTTP请求报文
  • TCP 协议:将请求报文按序号分割成多个报文段
  • IP 协议:搜索对方的地址,一边中转一边传送
  • TCP 协议:按序号以原来的顺序重组请求报文
  • 请求的处理结果也同样利用TCP/IP协议向用户进行回传
各种协议与HTTP协议的关系
各种协议与HTTP协议的关系

1.7 URI 和 URL

  • URI(Uniform Resource Identifier):统一资源标识符
  • URL(Uniform Resource Locator):统一资源定位符

1.7.1 统一资源标识符

URI 是 Uniform Resource Identifier 的缩写,RFC2396 分别对这 3 个单词进行了如下定义。

  • Uniform

规定统一的格式可方便处理多种不同类型的资源,而不用根据上下文环境来识别资源指定的访问方式。

另外,加入新增的协议方案(如 http: 或 ftp:)也更容易。

  • Resource

资源的定义是“可标识的任何东西”。除了文档文件、图像或服务(例如当天的天气预报)等能够区别于其他类型的,全都可作为资源。

另外,资源不仅可以是单一的,也可以是多数的集合体。

  • Identifier

表示可标识的对象。也称为标识符。

综上所述,URI 就是由某个协议方案表示的资源的定位标识符协议方案是指访问资源所使用的协议类型名称

“RFC3986:统一资源标识符(URI)通用语法”中列举了几种 URI 例子,如下所示。

ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt
ldap://[2001:db8::7]/c=GB?objectClass?one
mailto:John.Doe@example.com
news:comp.infosystems.www.servers.unix
tel:+1-816-555-1212
telnet://192.0.2.16:80/
urn:oasis:names:specification:docbook:dtd:xml:4.1.2

1.7.2 URI 格式

表示指定的 URI,要使用涵盖全部必要信息的绝对 URI、绝对 URL 以及相对 URL。相对 URL,是指从浏览器中基本 URI 处指定的 URL,形如 /image/logo.gif

绝对URI的格式
绝对URI的格式
  • 登陆信息(认证)

指定用户名和密码作为从服务器端获取资源时必要的登录信息(身份认证)。此项是可选项。

  • 服务器地址

使用绝对 URI 必须指定待访问的服务器地址。地址可以是类似 hackr.jp 这种 DNS 可解析的域名,或是 192.168.1.1 这类 IPv4 地址 名,还可以是 [0:0:0:0:0:0:0:1] 这样用方括号括起来的 IPv6 地址名。

  • 服务器端口号

指定服务器连接的网络端口号。此项也是可选项,若用户省略则自动使用默认端口号。

  • 带层次的文件路径

指定服务器上的文件路径来定位特指的资源。这与 UNIX 系统的文件目录结构相似。

  • 查询字符串

针对已指定的文件路径内的资源,可以使用查询字符串传入任意参数。此项可选

  • 片段标识符

使用片段标识符通常可标记出已获取资源中的子资源(文档内的某个位置)。但在 RFC 中并没有明确规定其使用方法。该项也为可选项。

第 2 章 简单的 HTTP 协议

2.1 HTTP 协议用于客户端和服务器端之间的通信

请求访问文本或图像等资源的一端称为客户端,而提供资源响应的一端称为服务器端。

在两台计算机之间使用 HTTP 协议通信时,在一条通信线路上必定有一端是客户端,另一端则是服务器端。

有时候,按实际情况,两台计算机作为客户端和服务器端的角色有可能会互换。但就仅从一条通信路线来说,服务器端和客户端的角色是确定的,而用 HTTP 协议能够明确区分哪端是客户端,哪端是服务器端。

2.2 通过请求和相应的交换达成通信

HTTP 协议规定,请求从客户端发出,最后服务器端响应该请求并返回。换句话说,肯定是先从客户端开始建立通信的,服务器端在没有接收到请求之前不会发送响应。

简单的HTTP请求示例
简单的HTTP请求示例

下面是从客户端发送给某个 HTTP 服务器端的请求报文中的内容。

GET /index.htm HTTP/1.1
Host: hackr.jp
  • GET 表示请求访问服务器的类型,称为方法(method)
  • /index.htm指明了请求访问的资源对象,称为请求URI(request-URI)
  • HTTP/1.1 表示HTTP的版本号,用来提示客户端使用的 HTTP 协议功能

综合来看,这段请求内容的意思是:请求访问某台 HTTP 服务器上的 /index.htm 页面资源。

请求报文是由请求方法请求 URI协议版本可选的请求首部字段内容实体构成的。

请求报文的构成
请求报文的构成

接收到请求的服务器,会将请求内容的处理结果以响应的形式返回。

HTTP/1.1 200 OK
Date: Tue, 10 Jul 2012 06:50:15 GMT
Content-Length: 362
Content-Type: text/html

<html>
……
  • HTTP/1.1 表示服务器对应的HTTP版本
  • 200 OK 表示请求的处理结果的状态码(status code)和原因短语(reason-phrase)
  • Date 是首部字段(header filed)内的一个属性
  • 之后的内容称为资源实体的主体(entity body)

响应报文基本上由协议版本状态码、用以解释状态码的原因短语、可选的响应首部字段以及实体主体构成。

响应报文的构成
响应报文的构成

2.3 HTTP 是不保存状态的协议

HTTP 是一种不保存状态,即无状态(stateless)协议。HTTP 协议自身不对请求和响应之间的通信状态进行保存。也就是说在 HTTP 这个级别,协议对于发送过的请求或响应都不做持久化处理

HTTP/1.1 虽然是无状态协议,但为了实现期望的保持状态功能,于是引入了 Cookie 技术。有了 Cookie 再用 HTTP 协议通信,就可以管理状态了。

2.4 请求 URI 定位资源

HTTP 协议使用 URI 定位互联网上的资源。正是因为 URI 的特定功能,在互联网上任意位置的资源都能访问到。

当客户端请求访问资源而发送请求时,URI 需要将作为请求报文中的请求 URI 包含在内。指定请求 URI 的方式有很多。

URI为完整的请求URI
URI为完整的请求URI

除此之外,如果不是访问特定资源而是对服务器本身发起请求,可以用一个 * 来代替请求 URI。下面这个例子是查询 HTTP 服务器端支持 的 HTTP 方法种类。

OPTIONS * HTTP/1.1

2.5 告知服务器意图的 HTTP 方法

下面介绍 HTTP/1.1 中可使用的方法。

  • GET:获取资源

GET 方法用来请求访问已被 URI 识别的资源,指定的资源经服务器端解析后返回响应内容。

  • POST:传输实体主体

虽然用 GET 方法也可以传输实体的主体,但一般不用 GET 方法进行传输,而是用 POST 方法。

虽说 POST 的功能与 GET 很相似,但 POST 的主要目的并不是获取响应的主体内容。

  • PUT:传输文件

PUT 方法用来传输文件。就像 FTP 协议的文件上传一样,要求在请求报文的主体中包含文件内容,然后保存到请求 URI 指定的位置。

但是,鉴于 HTTP/1.1 的 PUT 方法自身不带验证机制,任何人都可以上传文件 , 存在安全性问题,因此一般的 Web 网站不使用该方法。

若配合 Web 应用程序的验证机制,或架构设计采用 REST(REpresentational State Transfer,表征状态转移)标准的同类 Web 网站,就可能会开放使用 PUT 方法。

  • HEAD:获得报文首部

HEAD 方法和 GET 方法一样,只是不返回报文主体部分。用于确认 URI 的有效性及资源更新的日期时间等。

  • DELETE:删除文件

DELETE 方法用来删除文件,是与 PUT 相反的方法。DELETE 方法按请求 URI 删除指定的资源。

但是,HTTP/1.1 的 DELETE 方法本身和 PUT 方法一样不带验证机制,所以一般的 Web 网站也不使用 DELETE 方法。当配合 Web 应用程序的验证机制,或遵守 REST 标准时还是有可能会开放使用的。

  • OPTIONS:询问支持的方法

OPTIONS 方法用来查询针对请求 URI 指定的资源支持的方法。

  • TRACE:追踪路径

TRACE 方法是让 Web 服务器端将之前的请求通信环回给客户端的方法。

发送请求时,在 Max-Forwards 首部字段中填入数值,每经过一个服务器端就将该数字减 1,当数值刚好减到 0 时,就停止继续传输,最后接收到请求的服务器端则返回状态码 200 OK 的响应。

客户端通过 TRACE 方法可以查询发送出去的请求是怎样被加工修改 / 篡改的。这是因为,请求想要连接到源目标服务器可能会通过代理中转,TRACE 方法就是用来确认连接过程中发生的一系列操作。

但是,TRACE 方法本来就不怎么常用,再加上它容易引发 XST(Cross-Site Tracing,跨站追踪)攻击,通常就更不会用到了。

使用TRACE方法的请求·响应的例子
使用TRACE方法的请求·响应的例子
  • CONNECT:要求用隧道协议连接代理

CONNECT 方法要求在与代理服务器通信时建立隧道,实现用隧道协议进行 TCP 通信。主要使用 SSL(Secure Sockets Layer,安全套接层)和 TLS(Transport Layer Security,传输层安全)协议把通信内容加 密后经网络隧道传输。

2.6 使用方法下达命令

向请求 URI 指定的资源发送请求报文时,采用称为方法的命令。

方法的作用在于,可以指定请求的资源按期望产生某种行为。方法中有 GET、POST 和 HEAD 等。

下表列出了 HTTP/1.0 和 HTTP/1.1 支持的方法。另外,方法名区分大小写,注意要用大写字母。

方法 说明 支持的 HTTP 协议版本
GET 获取资源 1.0、1.1
POST 传输实体主体 1.0、1.1
PUT 传输文件 1.0、1.1
HEAD 获得报文首部 1.0、1.1
DELETE 删除文件 1.0、1.1
OPTIONS 询问支持的方法 1.1
TRACE 追踪路径 1.1
CONNECT 要求用隧道协议连接代理 1.1
LINK 建立和资源之间的联系 1.1
UNLINE 断开连接关系 1.1

LINK 和 UNLINK 已被 HTTP/1.1 废弃,不再支持。

2.7 持久连接节省通信量

HTTP 协议的初始版本中,每进行一次 HTTP 通信就要断开一次 TCP 连接。

以当年的通信情况来说,因为都是些容量很小的文本传输,所以即使这样也没有多大问题。可随着 HTTP 的普及,文档中包含大量图片的情况多了起来。

比如,使用浏览器浏览一个包含多张图片的 HTML 页面时,在发送请求访问 HTML 页面资源的同时,也会请求该 HTML 页面里包含的其他资源。因此,每次的请求都会造成无谓的 TCP 连接建立和断开,增加通信量的开销。

2.7.1 持久连接

为解决上述 TCP 连接的问题,HTTP/1.1 和一部分的 HTTP/1.0 想出了持久连接(HTTP Persistent Connections,也称为 HTTP keep-alive 或 HTTP connection reuse)的方法。持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态

持久连接的好处在于减少了 TCP 连接的重复建立和断开所造成的额外开销,减轻了服务器端的负载。另外,减少开销的那部分时间,使 HTTP 请求和响应能够更早地结束,这样 Web 页面的显示速度也就相应提高了。

2.7.2 管线化

持久连接使得多数请求以管线化(pipelining)方式发送成为可能。从前发送请求后需等待并收到响应,才能发送下一个请求。管线化技术出现后,不用等待响应亦可直接发送下一个请求。

这样就能够做到同时并行发送多个请求,而不需要一个接一个地等待响应了。

比如,当请求一个包含 10 张图片的 HTML Web 页面,与挨个连接相比,用持久连接可以让请求更快结束。而管线化技术比持久连接还要快。请求数越多,时间差就越明显。

HTTP 是无状态协议,它不对之前发生过的请求和响应的状态进行管理。也就是说,无法根据之前的状态进行本次的请求处理。

保留无状态协议这个特征的同时又要解决类似的矛盾问题,于是引入了 Cookie 技术。Cookie 技术通过在请求和响应报文中写入 Cookie 信息控制客户端的状态

Cookie 会根据从服务器端发送的响应报文内的一个叫做 Set-Cookie 的首部字段信息,通知客户端保存 Cookie。当下次客户端再往该服务器发送请求时,客户端会自动在请求报文中加入 Cookie 值后发送出去。

服务器端发现客户端发送过来的 Cookie 后,会去检查究竟是从哪一个客户端发来的连接请求,然后对比服务器上的记录,最后得到之前的状态信息

在发生 Cookie 交互的场景中,HTTP 请求报文和响应报文的内容如下。

  • 请求报文(没有 Cookie 信息的状态)
GET /reader/ HTTP/1.1
Host: hackr.jp
*首部字段内没有Cookie的相关信息
  • 响应报文(服务器端生成 Cookie 信息)
HTTP/1.1 200 OK
Date: Thu, 12 Jul 2012 07:12:20 GMT
Server: Apache
<Set-Cookie: sid=1342077140226724; path=/; expires=Wed,
10-Oct-12 07:12:20 GMT>
Content-Type: text/plain; charset=UTF-8
  • 请求报文(自动发送保存着的 Cookie 信息)
GET /image/ HTTP/1.1
Host: hackr.jp
Cookie: sid=1342077140226724